Gruppo risolubile
In algebra, un gruppo risolubile è un gruppo che possiede una serie normale abeliana, ovvero tale che esiste una catena di sottogruppi
(dove è l'elemento neutro del gruppo) in cui ogni è normale in e il quoziente è abeliano. Se è un gruppo finito è equivalente richiedere che questi quozienti siano non solo abeliani, ma ciclici.
I gruppi risolubili prendono il nome dalla teoria di Galois: infatti un polinomio è risolubile per radicali su un campo di caratteristica zero se e solo se il suo gruppo di Galois su è risolubile.
Esempi
| ]Ogni gruppo abeliano è banalmente risolubile attraverso la serie . Altri esempi di gruppi di cui è facile dimostrare la risolubilità sono i gruppi diedrali e i p-gruppi, cioè i gruppi con elementi (con numero primo); anche i gruppi nilpotenti sono risolubili.
William Burnside dimostrò nel 1904 che sono risolubili tutti i gruppi di ordine , con e primi dispari; la sua congettura che questo valesse anche per tutti i gruppi di ordine dispari fu dimostrata nel 1963 da Walter Feit e John Griggs Thompson; questo risultato, noto come teorema di Feit-Thompson, fu un importante passo verso la classificazione dei gruppi semplici finiti.
Il più piccolo gruppo non risolubile è il gruppo alterno , con 60 elementi. Ogni gruppo semplice non abeliano, non possedendo sottogruppi normali, non è risolubile; altri esempi importanti di gruppi non risolubili sono i gruppi simmetrici , per maggiore o uguale a ; questi sono importanti nel contesto della teoria di Galois, in quanto il polinomio generale di grado ha come gruppo di Galois proprio , e quindi non è risolubile per radicali.
Proprietà
| ]In virtù dei teoremi di isomorfismo, sia i sottogruppi che i quozienti di un gruppo risolubile sono risolubili; nessuno di questi due criteri può essere tuttavia invertito, in quanto ogni gruppo contiene sottogruppi abeliani (quindi risolubili) e ogni gruppo ha come quoziente , cioè il gruppo col solo elemento neutro, che è ovviamente risolubile. Combinare queste due proprietà dà tuttavia un criterio sufficiente: se è un sottogruppo (normale) di e sia che sono risolubili allora anche il gruppo è risolubile. Attraverso questa proprietà si dimostra che il prodotto diretto di un numero finito di gruppi risolubili è ancora risolubile.
Una caratterizzazione dei gruppi risolubili può essere data anche attraverso la sua serie derivata: detto il sottogruppo derivato di , cioè il sottogruppo generato dai commutatori di (gli elementi nella forma al variare di e in ), un gruppo è risolubile se e solo se la successione
in cui ogni sottogruppo è il derivato del precedente, raggiunge il sottogruppo banale , oppure, in modo equivalente, se esiste un tale che
Per i gruppi finiti, la risolubilità equivale all'esistenza di una serie di composizione i cui fattori siano tutti gruppi semplici abeliani; questo non vale per i gruppi infiniti, perché, ad esempio, sebbene degli interi sia risolubile (perché abeliano) ha ogni sottogruppo non banale isomorfo a sé stesso, e quindi non possiede una serie di composizione.
Note
| ]- ^ (EN) Walter Feit e John Griggs Thompson, Solvability of groups of odd order, in Pacific Journal of Mathematics, vol. 13, 1963, pp. 775-1029, ISSN 0030-8730, MR 0166261. URL consultato il 29 maggio 2009.
Bibliografia
| ]- Giulia Maria Piacentini Cattaneo, Algebra - un approccio algoritmico, Padova, Decibel-Zanichelli, 1996, ISBN 978-88-08-16270-0.
- Stefania Gabelli, Teoria delle Equazioni e Teoria di Galois, Milano, Springer, 2008, ISBN 978-88-470-0618-8.
Collegamenti esterni
| ]- (EN) Opere riguardanti Solvable groups, su Open Library, Internet Archive.
- (EN) Eric W. Weisstein, Solvable Group, su MathWorld, Wolfram Research.
- (EN) Solvable group, su Encyclopaedia of Mathematics, Springer e European Mathematical Society.
- Sequenza degli ordini dei gruppi finiti non risolubili sull'On-Line Encyclopedia of Integer Sequences
- Teoria dei gruppi
wikipedia, wiki, libro, libri, biblioteca, articolo, leggere, scaricare, gratis, download gratuito, mobile, telefono, android, ios, apple, telefono cellulare, pc, web, computer, Informazioni su Gruppo risolubile, Che cos’è Gruppo risolubile? Cosa significa Gruppo risolubile?




Lascia una risposta
Vuoi partecipare alla discussione?Sentiti libero di contribuire!